SECTION 00850 ## ASPHALT MATERIAL #### PART 1 GENERAL #### 1.1 SECTION INCLUDES A. Asphalt materials #### 1.2 PAYMENT PROCEDURES - A. Price adjustments for asphalt cement and liquid asphalt (chip-seal emulsions and/or cut-backs): - 1. Standard department procedures governs price adjustments made where asphalt material does not conform to the specifications - a. If the price adjustment exceeds 30 percent, the Engineer may order the removal of any or all the defective asphalt material. - b. The pay factor for such material is 0.50 when allowed to remain in place. - B. Price adjustments for Performance Graded Asphalt Binder (PGAB): - 1. Standard department PGAB management plan governs price reductions or removal of material where the binder does not conform to the specifications. #### 1.3 REFERENCES - A. AASHTO M 81: Cut-Back Asphalt (Rapid-Curing Type) - B. AASHTO M 82: Cut-Back Asphalt (Medium-Curing Type) - C. AASHTO M 140: Emulsified Asphalt - D. AASHTO M 208: Cationic Emulsified Asphalt - E. AASHTO M 226: Viscosity Graded Asphalt Cement - F. AASHTO M 320: Performance Graded Asphalt Cement Asphalt Material 00850 - Page 1 of 19 - G. AASHTO R 28: Accelerated Aging of Asphalt Binder Using a Pressurized Aging Vessel (PAV). - H. AASHTO T 44: Solubility of Bituminous Materials - I. AASHTO T 48: Flash and Fire Points by Cleveland Open Cup - J. ASHTO T 49: Penetration of Bituminous Materials - K. AASHTO T 50: Float Test for Bituminous Materials - L. AASHTO T 51: Ductility of Bituminous Materials - M. AASHTO T 59: Testing Emulsified Asphalt - N. AASHTO T 201: Kinematic Viscosity of Asphalts - O. AASHTO T 228: Specific Gravity of Semi-Solid Bituminous Materials - P. AASHTO T 240: Effect of Heat and Air on a Moving Film of Asphalt (Rolling Thin-Film Oven Test) - Q. AASHTO T 300: Force Ductility of Bituminous Materials - R. AASHTO T 301: Elastic Recovery Test of Bituminous Materials by Means of a Ductilometer - S. AASHTO T 313: Determining the Flexural Creep Stiffness of Asphalt Binder Using the Bending Beam Rheometer (BBR) - T. AASHTO T 314: Determining the Fracture Properties of Asphalt Binder in Direct Tension - U. AASHTO T 315: Determining the Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer (DSR). - V. AASHTO T 316: Viscosity Determination of Asphalt Binder Using Rotational Viscometer. - W. ASTM D 92: Flash and Fire Points by Cleveland Open Cup - X. ASTM D 1190: Concrete Joint Sealer, Hot-Applied Elastic Type - Y. ASTM D 2007: Characteristic Groups in Rubber Extender and Processing Oils and Other Petroleum-Derived Oils by the Clay-Gel Absorption Chromatographic Method - Z. ASTM D 2026: Cutback Asphalt (Slow-Curing Type) - AA. ASTM D 3405: Joint Sealants, Hot-Applied, for Concrete and Asphalt Pavements - BB. ASTM D 4402: Viscosity Determinations of Unfilled Asphalts Using the Brookfield Thermosel Apparatus - CC. ASTM D 5329: Sealants and Fillers, Hot-Applied, For Joints and Cracks in Asphaltic and Portland Cement Concrete Pavements - DD. ASTM D 5801: Toughness and Tenacity of Bituminous Materials - EE. California Test Methods - FF. UDOT Materials Manual of Instruction - GG. UDOT Minimum Sampling and Testing GuideHH UDOT Asphalt Binder Quality Management Plan #### 1.4 SUBMITTALS - A. For each shipment of material, supply a vendor-prepared bill of lading showing the following information: - 1. Type and grade of material - 2. Type and amount of additives, used, if applicable - 3. Destination - 4. Consignee's name - 5. Date of Shipment - 6. Railroad car or truck identification - 7. Project number - 8. Loading temperature - 9. Net weight in tons (or net gallons corrected to 60 degrees F, when requested) - 10. Specific gravity - 11. Bill of lading number - 12. Manufacturer of asphalt material ## 1.5 DELIVERY, STORAGE, AND HANDLING - A. Each shipment of asphalt material must: - 1. Be uniform in appearance and consistency. - 2. Show no foaming when heated to the specified loading temperature. - B. Do not supply shipments contaminated with other asphalt types or grades than those specified. #### 1.6 GRADE OF MATERIAL A. The Engineer determines the grade of material to be used based on the supply source designated by the Contractor when the bid proposal lists more than one grade of asphalt material. #### PART 2 PRODUCTS ## 2.1 PERFORMANCE GRADED ASPHALT BINDER (PGAB) - A. Supply PGABs under the Approved Supplier Certification (ASC) System. Refer to the UDOT Minimum Sampling and Testing Guide, Section 509, Asphalt Binder Management Plan. - B. As specified in AASHTO M 320 for all PGABs having algebraic differences less than 92 degrees between the high and low design temperatures. - C. As specified in Tables 1, 2, 3, 4, 5, 6, 7, and 8 for all PGABs having algebraic differences equal to or greater than 92 degrees between the high and low design temperatures. | | Table 1 | | | | |---|---|------------|--|--| | PG58-34 | | | | | | Original Binder | | | | | | Dynamic Shear Rheometer, AASHTO T 315 | @58°C, G*, kPa | 1.30 Min. | | | | | @58°C, phase angle, degrees | 74.0 Max. | | | | Rotational Viscometer, AASHTO T 316 | @135°C, Pa.s | 3 Max. | | | | Flash Point, AASHTO T 48 | $^{\circ}\mathrm{C}$ | 260 Min. | | | | RTFO Residue, AASHTO T 240 | | | | | | Dynamic Shear Rheometer, AASHTO T 315 | @5°C, G*/sinδ, kPa | 2.20 Min. | | | | Elastic Recovery, AASHTO T 301 mod ¹ | % | 65 Min. | | | | PAV Residue, 20 hours, 2.10 Mpa, 100 °C, AASHTO |) R 28 | | | | | Dynamic Shear Rheometer, AASHTO T 315 | @16°C, kPa | 5000 Max. | | | | Bending Beam Rheometer, AASHTO T 313 | @-24°C, S, MPa | 300 Max. | | | | | @-24°C, m-value | 0.300 Min. | | | | Direct Tension Test, AASHTO T 314 | @-24°C, Failure Strain, % | 1.5 Min. | | | | | @-24°C, Failure Stress ² , MPa | 4.0 Min. | | | | 1 | | | | | ¹Modify paragraph 4.5 as follows: After 20 cm has been reached, stop the ductilometer and within 2 seconds, sever the specimen at its center with a pair of scissor... ² No allowances will be given for passing at a colder grade | PG64-28 | | | | |---|---|------------|--| | Original Binder | | | | | Dynamic Shear Rheometer, AASHTO T 315 | @64°C, G*, kPa | 1.30 Min. | | | | @64°C, phase angle, degrees | 74.0 Max. | | | Rotational Viscometer, AASHTO T 316 | @135°C, Pa.s | 3 Max. | | | Flash Point, AASHTO T 48 | $^{\circ}\mathrm{C}$ | 260 Min. | | | RTFO Residue, AASHTO T 240 | | | | | Dynamic Shear Rheometer, AASHTO T 315 | @64°C, G*/sinδ, kPa | 2.20 Min. | | | Elastic Recovery, AASHTO T 301 mod ¹ | % | 65 Min. | | | PAV Residue, 20 hours, 2.10 Mpa, 100 °C, AASHTO |) R 28 | | | | Dynamic Shear Rheometer, AASHTO T 315 | @22°C, kPa | 5000 Max. | | | Bending Beam Rheometer, AASHTO T 313 | @-18°C, S, MPa | 300 Max. | | | - | @-18°C, m-value | 0.300 Min. | | | Direct Tension Test, AASHTO T 314 | @-18°C, Failure Strain, % | 1.5 Min. | | | | @-18°C, Failure Stress ² , MPa | 4.0 Min. | | ¹Modify paragraph 4.5 as follows: After 20 cm has been reached, stop the ductilometer and within 2 seconds, sever the specimen at its center with a pair of scissors... No allowances will be given for passing at a colder grade | | Tubic 5 | | | |---|---|------------|--| | PG64-34 | | | | | Original Binder | | | | | Dynamic Shear Rheometer, AASHTO T 315 | @64°C, G*, kPa | 1.30 Min. | | | | @64°C, phase angle, degrees | 71.0 Max. | | | Rotational Viscometer, AASHTO T 316 | @135°C, Pa.s | 3 Max. | | | Flash Point, AASHTO T 48 | °C | 260 Min. | | | RTFO Residue, AASHTO T-240 | | | | | Dynamic Shear Rheometer, AASHTO T 315 | @64°C, G*/sinδ, kPa | 2.20 Min. | | | Elastic Recovery, AASHTO T 301 mod ¹ | % | 70 Min. | | | PAV Residue, 20 hours, 2.10 Mpa, 100 °C, AASHTO | R 28 | | | | Dynamic Shear Rheometer, AASHTO T 315 | @19°C, kPa | 5000 Max. | | | Bending Beam Rheometer, AASHTO T 313 | @-24°C, S, MPa | 300 Max. | | | | @-24°C, m-value | 0.300 Min. | | | Direct Tension Test, AASHTO T 314 | @-24°C, Failure Strain, % | 1.5 Min. | | | | @-24°C, Failure Stress ² , MPa | 4.0 Min. | | | | | | | ¹Modify paragraph 4.5 as follows: After 20 cm has been reached, stop the ductilometer and within 2 seconds, sever the specimen at its center with a pair of scissors... ² No allowances will be given for passing at a colder grade | PG70-22 | | | | |---|---|------------|--| | Original Binder | | | | | Dynamic Shear Rheometer, AASHTO T 315 | @70°C, G*, kPa | 1.30 Min. | | | | @70°C, phase angle, degrees | 74.0 Max. | | | Rotational Viscometer, AASHTO T 316 | @135°C, Pa.s | 3 Max. | | | Flash Point, AASHTO T 48 | $^{\circ}\mathrm{C}$ | 260 Min. | | | RTFO Residue, AASHTO T 240 | | | | | Dynamic Shear Rheometer, AASHTO T 315 | @70°C, G*/sinδ, kPa | 2.20 Min. | | | Elastic Recovery, AASHTO T 301 mod ¹ | % | 65 Min. | | | PAV Residue, 20 hours, 2.10 Mpa, 100 °C, AASHTO |) R 28 | | | | Dynamic Shear Rheometer, AASHTO T 315 | @28°C, kPa | 5000 Max. | | | Bending Beam Rheometer, AASHTO T 313 | @-12°C, S, MPa | 300 Max. | | | _ | @-12°C, m-value | 0.300 Min. | | | Direct Tension Test, AASHTO T 314 | @-12°C, Failure Strain, % | 1.5 Min. | | | | @-12°C, Failure Stress ² , MPa | 4.0 Min. | | ¹Modify paragraph 4.5 as follows: After 20 cm has been reached, stop the ductilometer and within 2 seconds, sever the specimen at its center with a pair of scissors... No allowances will be given for passing at a colder grade | | Table 5 | | | | |---|---|------------|--|--| | PG70-28 | | | | | | Original Binder | | | | | | Dynamic Shear Rheometer, AASHTO T 315 | @70°C, G*, kPa | 1.30 Min. | | | | | @70°C, phase angle, degrees | 71.0 Max. | | | | Rotational Viscometer, AASHTO T 316 | @135°C, Pa.s | 3 Max. | | | | Flash Point, AASHTO T 48 | °C | 260 Min. | | | | RTFO Residue, AASHTO T 240 | | | | | | Dynamic Shear Rheometer, AASHTO T 315 | @70°C, G*/sinδ, kPa | 2.20 Min. | | | | Elastic Recovery, AASHTO T 301 mod ¹ | % | 70 Min. | | | | PAV Residue, 20 hours, 2.10 Mpa, 100 °C, AASHTO | R 28 | | | | | Dynamic Shear Rheometer, AASHTO T 315 | @25°C, kPa | 5000 Max. | | | | Bending Beam Rheometer, AASHTO T 313 | @-18°C, S, MPa | 300 Max. | | | | | @-18°C, m-value | 0.300 Min. | | | | Direct Tension Test, AASHTO T 314 | @-18°C, Failure Strain, % | 1.5 Min. | | | | | @-18°C, Failure Stress ² , MPa | 4.0 Min. | | | ¹Modify paragraph 4.5 as follows: After 20 cm has been reached, stop the ductilometer and within 2 seconds, sever the specimen at its center with a pair of scissors... No allowances will be given for passing at a colder grade | PG70-34 | | | | |---|---|------------|--| | Original Binder | | | | | Dynamic Shear Rheometer, AASHTO T 315 | @70°C, G*, kPa | 1.30 Min. | | | | @70°C, phase angle, degrees | 71.0 Max. | | | Rotational Viscometer, AASHTO T 316 | @135 °C, Pa.s | 3 Max. | | | Flash Point, AASHTO T 48 | $^{\circ}\mathrm{C}$ | 260 Min. | | | RTFO Residue, AASHTO T 240 | | | | | Dynamic Shear Rheometer, AASHTO T 315 | @70°C, G*/sinδ, kPa | 2.20 Min. | | | Elastic Recovery, AASHTO T 301 mod ¹ | % | 75 Min. | | | PAV Residue, 20 hours, 2.10 Mpa, 100 °C, AASHTO |) R 28 | | | | Dynamic Shear Rheometer, AASHTO T 315 | @22°C, kPa | 5000 Max. | | | Bending Beam Rheometer, AASHTO T 313 | @-24°C, S, MPa | 300 Max. | | | - | @-24°C, m-value | 0.300 Min. | | | Direct Tension Test, AASHTO T 314 | @-24°C, Failure Strain, % | 1.5 Min. | | | | @-24°C, Failure Stress ² , MPa | 4.0 Min. | | ¹Modify paragraph 4.5 as follows: After 20 cm has been reached, stop the ductilometer and within 2 seconds, sever the specimen at its center with a pair of scissors... No allowances will be given for passing at a colder grade | | Tuble / | | | | |---|---|------------|--|--| | PG76-22 | | | | | | Original Binder | | | | | | Dynamic Shear Rheometer, AASHTO T 315 | @76°C, G*, kPa | 1.30 Min. | | | | | @76°C, phase angle, degrees | 71.0 Max. | | | | Rotational Viscometer, AASHTO T 316 | @135°C, Pa.s | 3 Max. | | | | Flash Point, AASHTO T 48 | $^{\circ}\mathrm{C}$ | 260 Min. | | | | RTFO Residue, AASHTO T 240 | | | | | | Dynamic Shear Rheometer, AASHTO T 315 | @76°C, G*/sinδ, kPa | 2.20 Min. | | | | Elastic Recovery, AASHTO T 301 mod ¹ | % | 70 Min. | | | | PAV Residue, 20 hours, 2.10 Mpa, 100 °C, AASHTO | R 28 | | | | | Dynamic Shear Rheometer, AASHTO T 315 | @ 31°C, kPa | 5000 Max. | | | | Bending Beam Rheometer, AASHTO T 313 | @-12°C, S, MPa | 300 Max. | | | | | @-12°C, m-value | 0.300 Min. | | | | Direct Tension Test, AASHTO T 314 | @-12°C, Failure Strain, % | 1.5 Min. | | | | | @-12°C, Failure Stress ² , MPa | 4.0 Min. | | | ¹Modify paragraph 4.5 as follows: After 20 cm has been reached, stop the ductilometer and within 2 seconds, sever the specimen at its center with a pair of scissors... No allowances will be given for passing at a colder grade | PG76-28 | | | | |---|---|------------|--| | Original Binder | | | | | Dynamic Shear Rheometer, AASHTO T 315 | @76°C, G*, kPa | 1.30 Min. | | | | @76°C, phase angle, degrees | 71. 0 Max. | | | Rotational Viscometer, AASHTO T 316 | @135°C, Pa.s | 3 Max. | | | Flash Point, AASHTO T 48 | $^{\circ}\mathrm{C}$ | 260 Min. | | | RTFO Residue, AASHTO T 240 | | | | | Dynamic Shear Rheometer, AASHTO T 315 | @76°C, G*/sinδ, kPa | 2.20 Min. | | | Elastic Recovery, AASHTO T 301 mod ¹ | % | 75 Min. | | | PAV Residue, 20 hours, 2.10 Mpa, 100 °C, AASHTO |) R 28 | | | | Dynamic Shear Rheometer, AASHTO T 315 | @28°C, kPa | 5000 Max. | | | Bending Beam Rheometer, AASHTO T 313 | @-18°C, S, MPa | 300 Max. | | | - | @-18°C, m-value | 0.300 Min. | | | Direct Tension Test, AASHTO T 314 | @-18°C, Failure Strain, % | 1.5 Min. | | | | @-18°C, Failure Stress ² , MPa | 4.0 Min. | | ¹Modify paragraph 4.5 as follows: After 20 cm has been reached, stop the ductilometer and within 2 seconds, sever the specimen at its center with a pair of scissors... ²No allowances will be given for passing at a colder grade # 2.2 ASPHALTIC CEMENT, LIQUID ASPHALTS, REJUVENATING AGENTS - A. As specified in AASHTO M 226, Table 2 with the following modifications: - 1. Delete and replace ductility at 77EF (25EC) with ductility at 39.2EF (4EC) with values as detailed below. AC - 2.5 50+ <u>AC - 5</u> 25+ <u>AC - 1</u> 15+ AC - 20 - B. As specified for cationic and anionic emulsified asphalt. - 1. All standard Slow Setting (SS, CSS), Medium Setting (MS, CMS), and Rapid Setting (RS, CRS) grades; inclusive of all High-Float designations (HF). - 2. Supply under the Approved Supplier Certification System (ASC). - 3. Meet AASHTO M 208 and M 140. - C. Conform to the requirements of one of these tables: - 1. Table 9: Cationic Rapid Setting Emulsified Polymerized Asphalt (CRS-2P) - 2. Table 10: Latex Modified Cationic Rapid Setting Emulsified Asphalt (LMCRS-2) - 3. Table 11: Cationic Medium Setting Emulsified Asphalt (CMS-2S) - 4. Table 12: High Float Medium Setting Emulsified Asphalt (HFMS-2) - 5. Table 13: High Float Medium Setting Emulsified Polymerized Asphalt (HFMS-2P) - 6. Table 14: High Float Rapid Setting Emulsified Polymerized Asphalt (HFRS-2P) - 7. Table 15: Cationic Rapid Setting Emulsified Asphalt (CRS-2A, B) - D. Curing cut-back asphalt: - 1. As specified for slow curing (SC) in ASTM D 2026. - 2. As specified for medium curing (MC) in AASHTO M 82. - 3. As specified for rapid curing (RC) in AASHTO M 81. - E. Conform to requirements for Emulsified Asphalt Pavement Rejuvenating Agent: - 1. Table 16: Type B - 2. Table 17: Type B Modified - 3. Table 18: Type C - 4. Table 19: Type D Table 9 | Cationic Rapid Setting Emulsified Polymerized Asphalt (CRS-2P) | | | | |---|-----------------------|----------|------| | Tests | AASHTO Test
Method | Min. | Max. | | Emulsion | | | | | Viscosity , SF, 140EF (60EC), s
(Project-site Acceptance/Rejection Limits) | T59 | 100 | 400 | | Settlement (a) 5 days, percent | T 59 | | 5 | | Storage Stability Test (b) 1 d, 24 h, percent | T 59 | | | | Demulsibility (c) 35 ml, 0.8% sodium dioctyl
Sulfosucinate, percent | T 59 | 40 | | | Particle Charge Test | T 59 | Positive | | | Sieve Test, percent | T 59 | | 0.10 | | Distillation | <u>.</u> | | | | Oil distillate, by volume of emulsion, percent | | | 0 | | Residue (d), percent | | 68 | | | Residue from Distillation Test | | | | | Penetration, 77EF(25EC), 100 g, 5 s, dmm | T 49 | 80 | 150 | | Ductility, 39.2EF(4EC), 5 cm/min, cm | T 51 | 35 | | | Toughness, lb-in | ASTM D 5801 | 75 | | | Tenacity, lb-in | ASTM D 5801 | 50 | | | Solubility in trichloroethylene, percent | T 44 | 97.5 | | - (a) The test requirement for settlement may be waived when the emulsified asphalt is used in less than a five-day time; or the purchaser may require that the settlement test be run from the time the sample is received until it is used, if the elapsed time is less than 5 days. - (b) The 24-hour (1-day) storage stability test may be used instead of the five-day settlement test. - (c) The demulsibility test is made within 30 days from date of shipment. - (d) Distillation is determined by AASHTO T 59, with modifications to include a $350 \pm 5EF$ (177±3°C) maximum temperature to be held for 15 minutes. Modify the asphalt cement prior to emulsification. Table 10 | Latex Modified Cationic Rapid Setting Emulsified Asphalt (LMCRS-2) | | | | | |--|-------------|----------|------|--| | Tests | AASHTO Test | Min. | Max. | | | | Method | | | | | Emulsion | | - | | | | Viscosity, SF, 122EF (50EC), s | T59 | 100 | 400 | | | (Project Site Acceptance/Rejection Limits) | | | | | | Settlement (a) 5 days, percent | T 59 | | 5 | | | Storage Stability Test (b) 1 d, 24 h, percent | T 59 | | 1 | | | Demulsibility (c) 35 ml, 0.8% sodium dioctyl | T 59 | 40 | | | | Sulfosucinate, percent | | | | | | Particle Charge Test | T 59 | Positive | | | | Sieve Test, percent | Т 59 | | 0.3 | | | Distillation | | | | | | Oil distillate, by volume of emulsion, percent | | | 0 | | | Residue (d), percent | | 65 | | | | Residue from Distillation Test | | | | | | Penetration, 77EF (25EC), 100 g, 5 s, dmm | T 49 | 40 | 200 | | | Torsional Recovery (e) | | 18 | | | - (a) The test requirement for settlement may be waived when the emulsified asphalt is used in less than a five-day time; or the purchaser may require that the settlement test be run from the time the sample is received until it is used, if the elapsed time is less than 5 days. - (b) May use the 24-hour (1-day) storage stability test instead of the five-day settlement test. - (c) Make the demulsibility test within 30 days from date of shipment. - (d) Determine distillation by AASHTO T 59, with modifications to include a 350 ± 5 EF (177±3EC) maximum temperature to be held for 15 minutes. - (e) CA 332 (California Test Method) #### Co-mill latex and asphalt during emulsification Table 11 | Cationic Medium Setting Emulsified Asphalt (CMS-2S) | | | | | | |---|-----------------------|---------------|--|--|--| | Tests | AASHTO Test
Method | Specification | | | | | Emulsion | Emulsion | | | | | | Viscosity, SF, 122EF (50EC), s | T 59 | 50 - 450 | | | | | Percent residue | T 59 | 60 min | | | | | One-day storage stability, percent | T 59 | 1 max | | | | | Sieve percent | T 59 | 0.10 max | | | | | Particle charge | T 59 | Positive | | | | | Oil Distillate, percent by volume of emulsion | T 59 | 5-15 | | | | | Residue | · | | | | | | Penetration, 77EF (25EC), 100g, 5 sec, dmm | T 59 | 100-250 | | | | | Solubility, percent | T 59 | 97.5 min. | | | | Table 12 | High Float Medium Setting Emulsified Asphalt (HFMS-2) | | | | |--|-----------------------|------|------| | Tests | AASHTO
Test Method | Min. | Max. | | Emulsion | | • | | | Viscosity, SF, 122°F (50°C), s
(Project Site Acceptance/Rejection
Limits | T59 | 70 | 300 | | Storage Stability Test, 1d, 24 h, percent | T59 | | 1.0 | | Sieve Test, percent | T59 | | 0.1 | | Distillation | T59 | | | | Oil Distillate, by volume of emulsion, percent | T59 | NA | NA | | Residue, percent | T59 | 65 | | | Residue from Distillation Test | | | • | | Penetration, 77°F (25°C), 100g, 5 s, dmm | T49 | 50 | 200 | | Float Test, 140°F (60°C), s | T50 | 1200 | | | Solubility in Trichloroethylene, percent | T44 | 97.5 | | | Ductility, 77°F (25°C) 5cm/min, cm | T51 | 40 | | Table 13 | High Float Medium Setting Emulsified Polymerized Asphalt (HFMS-2P) (a) | | | | |--|-----------------------|------|------| | Tests | AASHTO
Test method | Min. | Max. | | Emulsion | | | • | | Viscosity, SF, 122EF (50EC), s
(Project Site Acceptance/Rejection Limits) | T 59 | 100 | 450 | | Storage Stability Test (a) 1 d, 24 h, percent | T 59 | | 0.1 | | Sieve Test, percent | Т 59 | | 0.1 | | Distillation | | | | | Oil distillate, by volume of emulsion, percent | T 59 | 1 | 7 | | Residue (c), percent | T 59 | 65 | | | Residue from Distillation Test | | | | | Penetration, 77EF (25EC), 100 g, 5 s, dmm | T 49 | 70 | 300 | | Float Test, 140EF (60EC), s | T 50 | 1200 | 300 | | Solubility in trichloroethylene, percent | Т 44 | 97.5 | | | Elastic Recovery, 77EF (25EC), percent | T 301 | 50 | | - (a) Supply an HFMS-2P (anionic, polymerized, high-float) as an emulsified blend of polymerized asphalt cement, water, and emulsifiers. Polymerize the asphalt cement with a minimum of 3.0% polymer by weight of the asphalt cement prior to emulsification. After standing undisturbed for a minimum of 24 hours, the emulsion shall be smooth and homogeneous throughout with no white, milky separation, pumpable, and suitable for application through a distributor. - (b) May use the 24-hour (1-day) storage stability test instead of the five-day settlement test. - (c) Determine the distillation by AASHTO T 59, with modifications to include a $350\pm 5EF$ (177 $\pm 3EC$) maximum temperature to be held for 15 minutes. Table 14 | High Float Rapid Setting Emulsified Polymerized Asphalt (HFRS-2P) (a) | | | | |---|-----------------------|------|------| | Tests | AASHTO
Test method | Min. | Max. | | Emulsion | | | | | Viscosity, SF @ 122EF (50EC), s
(Project Site Acceptance/Rejection Limits) | T 59 | 50 | 450 | | Storage Stability Test (b) 1 d, 24 h, percent | T 59 | | 1 | | Demulsibility 0.02 N Ca Cl ₂ , percent | T 59 | 40 | | | Sieve Test, percent | T 59 | | 0.1 | | Distillation | | | | | Oil distillate, by volume of emulsion, percent | T 59 | | 3 | | Residue (c), percent | T 59 | 65 | | | Residue from Distillation Test | · | | | | Penetration, 77°F (25EC), 100 g, 5 s, dmm | T 49 | 70 | 150 | | Float Test, 140EF (60EC), s | T 50 | 1200 | | | Solubility in trichloroethylene, percent | T 44 | 97.5 | | | Elastic Recovery, 77EF (25EC), percent | T 301 | 58 | | - (a) Supply an HFMS-2SP (anionic, polymerized, high-float) as an emulsified blend of polymerized asphalt cement, water, and emulsifiers. Polymerize the asphalt cement with a minimum of 3.0% polymer by weight of the asphalt cement prior to emulsification. After standing undisturbed for a minimum of 24 hours, the emulsion shall be smooth and homogeneous throughout with no white, milky separation, pumpable, and suitable for application through a distributor. - (b) May use the 24-hour (1-day) storage stability test instead of the five-day settlement test. - (c) Determine the distillation by AASHTO T 59, with modifications to include a 350 ± 5 EF (177 ± 3 EC) maximum temperature to be held for 15 minutes. Table 15 | Tabic | 13 | | | | |--|-----------------------|-----|----------|-----| | Cationic Rapid Setting Emulsified Asphalt (CRS-2A,B) | | | | | | Tests | AASHTO Test
Method | M | in | Max | | Emulsion | | | | | | Viscosity, SF, 122EF (50EC), s | T 59 | 140 | 400 | | | (Project Site Rejection/Acceptance Limits) | | | | | | Storage stability test, 24 h, percent | T 59 | | 1 | | | Demulsibility, 35 mL 0.8 percent Sodium | T 59 | | | | | Dioctyl Sulfosucinate, percent | | 40 | | | | Particle charge test | T 59 | P | Positive | | | Sieve test, percent | T 59 | | 0.10 | | | Distillation | • | • | • | | | Oil distillate, by volume of emulsion, percent | T 59 | | 0 | • | | Residue, percent | T 59 | 65 | | | | | | | | | Use PG58-22 and PG64-22 as base asphalt cement for CRS-2A, B, respectively. Specification for high temperature performance: original and RTFO G*/sin* within 3EC of grade. Table 16 | Tests | Test Method | Limits | |--|-------------------------------|---------------------| | Viscosity, SF, 77EF (25EC), s | AASHTO T 59 | 25-150 | | Residue, percent W | AASHTO T 59 (mod) (a) | 62 Min. | | Sieve Test, percent W | AASHTO T 59 | 0.10 Max. | | 5-day Settlement | AASHTO T 59 | 5.0 Max. | | Particle Charge | AASHTO T 59 | Positive | | Pumping Stability (b) | | Pass | | Residue from Distillation (a) | | | | Viscosity @ 140°F (60°C), mm ² /s | AASHTO T 201 | 2500-7500 | | Solubility in 1,1,1 Trichloroethylene, percent | AASHTO T 44 | 98 Min. | | Flash Point, COC | ASTM D 92 | 204EC, Min. | | Asphaltenes, percent W | ASTM D 2007 | 15 Max. | | Saturates, percent W | ASTM D 2007 | 30 Max. | | Aromatics, percent W | ASTM D 2007 | 25 Min. | | Polar Compounds, percent W | ASTM D 2007 | 25 Min. | | (a) Determine the distillation by AASH | ITO T 59 with modifications | to include a | | 300 ±5EF (149±3EC) maximum ter | mperature to be held for 15 n | ninutes. | | (b) Test pumping stability by pumping | 475 ml of Type B diluted 1 | oart concentrate to | | part water, at 77EF (25°C) through | a 1/4 inch gear pump operati | ng at 1750 rpm fo | | | ificant separation or coagula | _ | | material. | 1 | 1 1 | Type B: an emulsified blend of, lube oil and/or lube oil extract, and petroleum asphalt. Table 17 | Emulsified Type B Modified Asphalt Pavement Rejuvenating Agent Concentrate | | | | |--|-------------|---------------|--| | Property | Test Method | Limits | | | Viscosity, SF, 77EF (25EC), s | AASHTO T 59 | 50-200 | | | Residue by distillation or Evaporation (a), percent W | AASHTO T 59 | 62 Min. | | | Sieve Test, percent W | AASHTO T 59 | 0.20 Max. | | | 5-day Settlement, percent W | AASHTO T 59 | 5.0 Max. | | | Particle Charge | AASHTO T 59 | Positive | | | Pumping Stability (b) | | Pass | | | Residue from Distillation (a) | | | | | Viscosity (c) 275EF (135EC), cP | ASTM D 4402 | 150 - 300 | | | Penetration, 77EF (25EC), dmm | AASHTO T 49 | 180 Min. | | | Solubility in 1,1,1 Trichloroethylene, percent | AASHTO T 44 | 98 Min. | | | Flash Point, COC, EF (EC) | AASHTO T 48 | 400(204) Min. | | | Asphaltenes, percent W | ASTM D 2007 | 20-40 | | | Saturates, percent % W | ASTM D 2007 | 20 Max. | | | Polar Compounds, percent W | ASTM D 2007 | 25 Min. | | | Aromatics, percent W | ASTM D 2007 | 20 Min. | | | PC/S Ratio | ASTM D 2007 | 1.5 Min. | | - (a) Determine the distillation by AASHTO T 59 with modifications to include a 300±5EF (149± 3°C) maximum temperature to be held for 15 minutes. - (b) Pumping stability is tested by pumping 475 ml of Type B diluted 1 part concentrate to 1 part water, at 77EF (25EC) through a 1/4 inch gear pump operating at 1750 rpm for 10 minutes with no significant separation or coagulation in pumped material. - (c) Brookfield Thermocel Apparatus-LV model. \geq 50 rpm with a #21 spindle, 7.1 g residue, at > 10 torque As required by the Asphalt Emulsion Quality Management Plan, UDOT Minimum Sampling and Testing Guide, Section 508) the supplier certifies that the base stock contains a minimum of 15% by weight of Gilsonite Ore. Use the HCL precipitation method as a qualitative test to detect the presence of Gilsonite. Table 18 | Emulsified Type C Asphalt Pavement Rejuvenating Agent Concentrate | | | | |---|-----------------|------------------|--| | Property | Test Method | Limits | | | Viscosity, SF, 77EF (25EC), s | AASHTO T 59 | 10-100 | | | Residue (a), percent W (Type C supplied | AASHTO T 59 (a) | 30 Min. 1:1 | | | ready to use 1:1 or 2:1. | | 40 Min. 2:1 | | | Sieve Test, percent W (b) | | 0.10 Max. | | | 5-day Settlement, percent W | AASHTO T 59 | 5.0 Max. | | | Particle Charge | AASHTO T 59 | Positive | | | pH (May be used if particle charge test is incor | nclusive) | 2.0 - 7.0 | | | Pumping Stability (c) | | Pass | | | Tests of Residue from Distillation (a) | | | | | Viscosity, 275EF (135°C), mm ² /s | AASHTO T 201 | 475-1500 | | | Solubility in 1,1,1 Trichloroethylene, percent | AASHTO T 44 | 97.5 Min. | | | RTFO mass loss, percent W | AASHTO T 240 | 2.5 Max. | | | Specific Gravity | AASHTO T 228 | 0.98 Min. | | | Flash Point, COC | AASHTO T 48 | 232 EC, Min. | | | Asphaltenes, percent W | ASTM D 2007 | 25 Min., 45 Max. | | | Saturates, percent W | ASTM D 2007 | 10 Max. | | | Polar Compounds, percent W | ASTM D 2007 | 30 Min. | | | Aromatics, percent W | ASTM D 2007 | 15 Min. | | - (a) Determine the distillation by AASHTO T 59 with modifications to include a $300\pm$ 5EF (149 \pm 3EC) maximum temperature to be held for 15 minutes. - (b) Test method identical to AASHTO T 59 except that distilled water is used in place of 2 % sodium oleate solution. - (c) Test pumping stability by pumping 475 ml of Type diluted 1 part concentrate to 1 part water, at 77EF (25EC) through a 1/4 inch gear pump operating at 1750 rpm for 10 minutes with no significant separation or coagulation in pumped material. As required by the Asphalt Emulsion Quality Management Plan, UDOT Minimum Sampling and Testing Guide, Section 508), the supplier certifies that the base stock contains a minimum of 10% by weight of Gilsonite ore. Use the HCL precipitation method as a qualitative test to detect the presence of Gilsonite. Table 19 | Emulsified Type D Asphalt Pavement Rejuvenating Agent Concentrate | | | | |--|-----------------------|-----------|--| | Property | Test Method | Limits | | | Viscosity, SF, 77EF (25EC), s | AASHTO T 59 | 30-90 | | | Residue, (a) percent W | AASHTO T 59 (mod) (a) | 65 | | | Sieve Test, percent W | AASHTO T 59 | 0.10 Max. | | | pН | | 2.0 - 5.0 | | | Residue from Distillation (c) | | | | | Viscosity, 140EF (60EC), cm ² /s | AASHTO T 201 | 300-1200 | | | Viscosity, 275EF (135EC), mm ² /s | AASHTO T 201 | 300 Min. | | | Modified Torsional Recovery (b) | CA 332 (Mod) | 40 % Min. | | | Toughness, 77EF (25EC), in-lb | ASTM D 5801 | 8 Min. | | | Tenacity, 77EF (25EC), in-lb | ASTM D 5801 | 5.3 Min. | | | Asphaltenes, percent W | ASTM D 2007 | 16 Max. | | | Saturates, percent W | ASTM D 2007 | 20 Max. | | | (a) California test method #331 for recovery of residue. (b) Torsional recovery measurement to include first 30 seconds | | | | - (b) Torsional recovery measurement to include first 30 seconds. - (c) Determine the distillation by AASHTO T 59 with modifications to include a 300±5EF (149±3EC) maximum temperature to be held for 15 minutes. #### 2.3 HOT-POUR CRACK SEALANT FOR BITUMINOUS CONCRETE - A. Combine a homogenous blend of materials to produce a sealant meeting properties and tests in Table 20. - B. Packaging and Marking: Supply sealant pre-blended, pre-reacted, and pre-packaged in lined boxes weighing no more than 30 lb. - 1. Use a dissolvable lining that will completely melt and become part of the sealant upon subsequent re-melting. - 2. Deliver the sealant in the manufacturer's original sealed container. Clearly mark each container with the manufacturer's name, trade name of sealant, batch or lot number, and recommended safe heating and application temperatures. Table 20 | Hot-Pour Bituminous Concrete Crack Sealant | | | | |--|--|----------------|---------------| | Application Properties | : | | | | Workability: | Pour readily and penetrate 0.25 inch and wider cracks for the entire | | | | | application temperature range recommende | | | | Curing: | No tracking caused by normal traffic after | 45 minutes fro | om | | | application. | | | | Asphalt Compatibility: | No failure in adhesion. No formation of an | | | | ASTM D 5329, | between the sealant and the bituminous con | | ning or other | | Section 14. | harmful effects on the bituminous concrete | | | | Material Handling: | Follow the manufacturer's safe heating and | | emperatures. | | Test Method | Property | Minimum | Maximum | | AASHTO T 51 | Ductility, modified, 1cm/min, 39.2EF | 30 | | | | (4EC), cm | | | | UDOT method 967 | Cold Temperature Flexibility | no cracks | | | AASHTO T 300 (a) | Force-Ductility, lb force | | 4 | | ASTM D 5329 | Flow 140EF (60EC), 5 hrs 75Eangle, | | 3 | | | mm | | | | ASTM D 3405 (b) | Tensile-Adhesion, modified | 300% | | | AASHTO T 228 | Specific Gravity, 60EF (15.6EC) | | 1.140 | | ASTM D 5329 | Cone Penetration, 77EF (25EC), 150 g, | | 90 | | | 5 sec., dmm | | | | ASTM D 5329 | Resilience, 77EF (25EC), 20 sec., percent | 30 | | | ASTM D 4402 | Viscosity, 380EF (193.3EC), SC4-27 | | 2500 | | | spindle, 20 rpm, cP | | | | ASTM D 5329 | Bond as per ASTM D 1190, Section 6.4 | | Pass | | (a) Maximum of 4 lb force during the specified elongation of 30 cm @ 1 cm/min, 39.2EF (4EC). | | | | | (b) Use ASTM D 34 | 405, Section 6.4.1. Delete bond and substitu | te tensile-adh | esion test in | | aggordance to D 5220 | | | | accordance to D 5329. #### PART 3 EXECUTION Not used # END OF SECTION **Revision History** November 18, 2004 - Revised LMCRS-2 by adding Table 10 from 00850.